

# Children Value Animals More Than Adults Do: A Conceptual Replication and Extension

Personality and Social Psychology Bulletin  
2025, Vol. 51(8) 1444–1455  
© 2024 by the Society for Personality and Social Psychology, Inc  
Article reuse guidelines:  
[sagepub.com/journals-permissions](http://sagepub.com/journals-permissions)  
DOI: 10.1177/01461672231219391  
[journals.sagepub.com/home/pspb](http://journals.sagepub.com/home/pspb)



Mariola Paruzel-Czachura<sup>1,2</sup>, Maximilian Maier<sup>3</sup>,  
Roksana Warmuz<sup>4</sup>, Matti Wilks<sup>5\*</sup>, and Lucius Caviola<sup>6\*</sup>

## Abstract

Recent psychological research finds that U.S. American children have a weaker tendency than U.S. American adults to value humans more than animals. We aimed to conceptually replicate and extend this finding in a preregistered study ( $N = 412$ ). We investigated whether 6- to 9-year-old Polish children (Study 1a) are less likely to prioritize humans over animals than Polish adults are (Studies 1b and 1c). We presented participants with moral dilemmas where they had to prioritize either humans or animals (dogs or chimpanzees) in situations that involved harming (i.e., a trolley problem) or benefiting (i.e., giving a snack). We found that Polish children prioritized humans over animals less than Polish adults did. This was the case both in dilemmas that involved preventing harm and in dilemmas that involved providing snacks. Both children and adults prioritized humans over chimpanzees more than humans over dogs.

## Keywords

speciesism, moral judgment, children, animals, moral circle

Received April 20, 2023; revision accepted November 20, 2023

Most people believe that the life of a human is more valuable than the life of an animal—an intuition that has been empirically demonstrated in recent psychological research (Amiot & Bastian, 2015; Caviola et al., 2019). For example, in the “moral machine” experiment, where participants decide who should be killed by an autonomous car, adults in 233 countries and territories prioritize humans over non-human animals (Awad et al., 2018).<sup>1</sup> Similarly, research shows that people are more willing to kill animals to save humans than the other way around (Caviola et al., 2021). Furthermore, people seem to value humans more than animals, even in cases where humans have equal or even lower cognitive capacities than animals (Caviola et al., 2022). This suggests that people, at least in part, morally prioritize humans over animals based merely on species membership—a phenomenon referred to as speciesism (Caviola et al., 2019; Dhont et al., 2016; Dhont, Hodson, Leite, & Salmen, 2019; Dhont, Hodson, Loughnan, & Amiot, 2019).

Much of the work in this domain has focused on adults’ judgments. Only recently has research begun to examine how children think about the moral status of animals (Collado et al., 2022; Henseler Kozachenko & Piazza, 2021; Hussar & Harris, 2018; McGuire et al., 2022, 2023; Neldner et al., 2018, 2023; Neldner & Wilks, 2022; Piazza et al., 2023; Wilks & Caviola et al., 2021). In a recent study, Wilks and

colleagues (2021) found that U.S. American children prioritized humans over animals to a lesser extent than U.S. American adults. The authors found that children as young as 5 and as old as 9 years would often choose to save two dogs or six pigs over one human being. No age-related differences between children were observed. By contrast, adults would save one human over even 100 dogs or pigs. However, it is unclear how generalizable this effect is and whether it appears only in harming scenarios or also in new contexts such as resource allocation (Schein, 2020).

Understanding the nature of speciesism in children and adults is important for several reasons. First, animals play a relevant role in the social lives of humans, for example, as

<sup>1</sup>University of Pennsylvania, USA

<sup>2</sup>University of Silesia in Katowice, Poland

<sup>3</sup>University College London, UK

<sup>4</sup>Kindergarten No. 11 in Dąbrowa Górnica and HEALIO Pracownia Psychoterapii Justyna Rać, Poland

<sup>5</sup>University of Edinburgh, UK

<sup>6</sup>Harvard University, USA

\*These authors share senior authorship.

## Corresponding Author:

Mariola Paruzel-Czachura, Institute of Psychology, University of Silesia in Katowice, Grzegoryskiego 53, 40-126 Katowice, Poland.

Email: mariola.paruzelczachura@gmail.com

pets, entertainment, equipment, or consumption (Alves & Barboza, 2018). Adults are strongly speciesist; this has been corroborated by research (Caviola et al., 2019, 2022); and statistics illustrating that people exploit billions of animals each year for food, materials, and entertainment (e.g., Rustemovich, 2017). But what is the nature of speciesism? Is it something people are born with or acquire later? Is speciesism a strong and universal attitude for all people? Understanding children's level of speciesism could shed light on these questions.

Second, studying children may offer insight into the cognitive (Killen et al., 2011) and emotional (Saarni, 2010) factors associated with the development of speciesism, as well as other moral judgments (e.g., moral expansiveness; Neldner et al., 2018). The fact that children appeared less speciesist than adults in past studies (Wilks & Caviola et al., 2021) was surprising. This result (Wilks & Caviola et al., 2021) is contrary to the view held by many philosophers and psychologists that children have an initially narrow "moral circle," which gradually expands with age (Horta, 2010; but see more discussion on children's moral circle: Marshall et al., 2022; McGuire et al., 2023; Neldner et al., 2018; Reinecke et al., 2021).

The moral circle is a concept used in ethics to explore questions of who or what should be the subject of moral consideration, rights, and ethical treatment. It often involves discussions about the extension of moral consideration to beings or entities beyond humans, such as animals, the environment, or even artificial intelligence (Laham, 2009; Singer, 2011). In developmental psychology, it was assumed that small children care more about ingroup members as their cognitive abilities are limited—they are not able to weigh multiple classifications simultaneously, such as those involved in the logical classification of objects or people (Aboud, 2008; Rutland et al., 2010). Children develop moral principles of fairness and equality from an early age, but they also develop implicit and explicit prejudice toward others from different groups (Rutland et al., 2010).

Theoretically, animals could be an example of such an out-group, so they should not be treated equally as an ingroup (i.e., humans), but the findings of Wilks and colleagues (2021) do not support this claim. Instead, their findings are consistent with the integrative social-cognitive developmental approach to prejudice (Rutland et al., 2010). According to this approach, children's attitudes can encompass both concerns related to group dynamics and moral considerations from a very young age. What shapes the specific character and early emergence of prejudice in childhood is influenced by a range of intricate factors. These include the social environment, interpersonal relationships, and the development of social cognition, all of which either make certain conflicts between groups and group identities highly noticeable or highlight the universal application of moral principles such as fairness and equality. Finally, understanding the emergence of speciesism could inform philosophical debate, e.g., in the form of moral debunking arguments (Jaquet, 2019).

## The Current Research

We aimed to conceptually replicate and extend Wilks and Caviola et al. (2021). We investigated whether 6-9-year-old Polish children (Study 1a) have a lower tendency to prioritize humans over animals (i.e., prioritizing humans over animals to a lesser extent) than Polish adults (Study 1b and Study 1c). Following Wilks and colleagues (2021), we presented participants with a range of moral dilemmas.

By studying a sample in a different country than the United States (Wilks & Caviola et al., 2021), we tried to overcome sampling limitations common in developmental psychology (Nielsen & Haun, 2016; Nielsen et al., 2017). While Poland and U.S. America are both considered WEIRD countries, that is, Western, Educated, Industrialized, Rich, and Democratic (Henrich et al., 2010), they show some cultural variation. For instance, Poland is a religiously homogeneous country (i.e., about 85% are part of the Catholic church) with predominantly white citizens (Bożewicz, 2020). Religious engagement is early-emerging; Polish children usually start taking part in religious courses when they are 3 years old. Past work shows that religion, especially Catholicism, is related to lower perceptions of the moral status of animals as animals were treated impersonally in religious teachings, where they were often depicted as resources for human use rather than sentient beings deserving of ethical consideration. Some Christian religions even assert that animals were created for people to use them (e.g., Gross, 2017; Scanes & Chengzhong, 2018). For example, the Bible reads: "And the fear of you and the dread of you shall be on every beast of the earth, on every bird of the air, on all that move on the earth, and on all the fish of the sea. They are given into your hand. Every moving thing that lives shall be food for you" (Genesis 9: 2-3). Thus, attitudes toward animals might be more negative in Poland than in the United States.

There are also a number of cross-cultural reasons why we might expect higher rates of speciesism in Poland than in the United States. Although Poland and the United States are not very psychologically distanced from each other (their distance score is 0.079; Muthukrishna et al., 2020), Polish and U.S. American cultures can be differentiated based on their prioritized values. For instance, Poland is described as emphasizing survival, which means that it strongly emphasizes materialistic values. U.S. American culture emphasizes self-expression values, often associated with pursuing personal goals beyond basic survival needs (Inglehart & Baker, 2000). We may suspect that people from a culture focused on material survival must care first about themselves (i.e., humans) and later animals. Second, as Poland has a higher power distance than the United States (Hofstede, 2001), we may suspect that an animal's life may be seen as less relevant than the life of a human to maintain the hierarchy of beings. Third, Poland is higher than the United States in the uncertainty avoidance index (Hofstede, 2001), and we may suspect that

higher uncertainty (so lower stability and trust) would predict less concern for animals. Finally, Poland is a tighter culture than the United States (Uz, 2015). We may expect that in tighter cultures, children would be more speciesist, as people there prefer clear rules and there is lower tolerance for any deviations (and some rules may be about animals, for example, "The dog's place is in the kennel").

We modified Wilks and colleagues' (2021) original study to test whether the findings generalize to scenarios involving harming rather than helping or vary by animal species. First, we employed a Switch case trolley dilemma in which participants had to decide whether to direct an oncoming train onto a track with humans or a track with animals. This meant that participants decided whom to harm (by contrast, Wilks and Caviola et al. asked participants to decide whom to save from sinking ships). Relying on the trolley dilemma thus allows us to examine whether the findings from Wilks and Caviola et al. generalize to another context involving potentially different intuitions. Moreover, it offers a more direct comparison to other moral psychology research, which has relied heavily on trolley dilemmas (e.g., Caviola et al., 2021).

Second, while Wilks and Caviola et al. pitted humans against dogs or pigs, we pitted humans against dogs or chimpanzees to test whether their findings would extend to animals more genetically similar to humans. Although chimpanzees are considered highly intelligent and are more closely related to humans, many adults still value them considerably less than humans (Caviola et al., 2019), and it has already been stated that diverse species should be included in such research (Caviola et al., 2019). We thus were interested in whether children would also, like adults, prioritize humans over chimpanzees. Moreover, we suspected that children might grant more moral worth to chimpanzees for the reasons above—chimpanzees may also be seen as rarer than pigs to many children (i.e., only seen in zoos or on television).

Third, we used a scenario involving distributing benefits (i.e., a snack) rather than harms to explore whether children also value benefiting animals over humans more than adults do.

Finally, we conducted a laboratory study with toy figurines (from LEGO) rather than images presented on iPads (though adults saw images of the same figurines online). Thus, we intended to examine whether these results generalize to another context, as we followed suggestions about the importance of context in moral psychology research—simply put, we should conduct studies using more real-life cases or materials, and LEGO meets this criterion (Bostyn et al., 2018; Schein, 2020). Research shows that playing with Lego toys is still one of the most popular plays among young children. LEGO is the first among the top 5 toy brands and the best seller among children's toys, which popularity increased during the COVID-19 pandemic ("Is LEGO the Most Popular Toy?," 2021).

All studies were approved by the Ethics Committee of the University of Silesia in Katowice. The preregistration is

available at <https://osf.io/3tr4x>. Data, analysis codes, and study materials are available at [https://osf.io/ecxyn/?view\\_only=None](https://osf.io/ecxyn/?view_only=None). We report all measures, manipulations, and exclusions.

## Preregistered Hypotheses

In line with Wilks and colleagues (2021), we hypothesized that children would prioritize humans over animals (dogs and chimpanzees) (Hypothesis 1); that children would prioritize humans over chimpanzees less than they prioritize humans over dogs (Hypothesis 2); and that children would prioritize humans over animals to a lesser extent than adults (Hypothesis 3). Finally, we did not expect age-related changes in the tendency to prioritize humans over animals among children, according to results from Wilks and colleagues' research (2021) (Hypothesis 4).

## Power Analysis

Following Wilks and Caviola et al. (2021), we conducted two power analyses using G\*Power to determine our sample size. For hypothesis 1, we conducted power analysis for a one-sample *t*-test to detect a small to medium effect ( $d = 0.3$ ), which indicated that we would need 71 children to test this hypothesis with 80% power. Hypotheses 2 and 4 were tested as part of multiple linear regression with six predictors. To obtain 80% power to detect a small to medium effect ( $f^2 = .075$ ) with an alpha of .05 in a multiple linear regression with six predictors (animal species, animal exposure, age, sex, sentience, intelligence, Table 1), G\*Power specified a sample size of 189. For hypothesis 3, we conducted a power analysis for a small to medium main effect ( $f = .175$ , partial  $\eta^2 = .03$ ) with an alpha of .05, numerator *df* of 1 and 2 groups (children and adults); G\*Power specified a total sample size of 259. To account for possible attrition from failing control checks and ensure that we were sufficiently powered, we aimed to collect 200 participants for each group (200 children and 200 adults).

## Study 1a: Polish Children

### Method

**Participants.** Participants were native Polish speakers from the urban part of the Silesian region in Poland who had no daily access to farms with animals or other places created for producing food or other animal benefits. Following our pre-registered stopping rule, we ended the data collection on the day we reached our target sample of 200 participants but included the data from all participants who had an appointment on the same day. This procedure led to a total sample of 212 participants.

Following our preregistered exclusion criteria, data from 42 participants were excluded from analyses because they failed to pass one or more of our attention checks or gave

**Table 1.** Standardized Regression Coefficients With 95% CI From a Multiple Regression Predicting Speciesism in Polish Participants From Different Explanatory Variables (Studies 1a and 1b).

| Predictor              | Children            | Adults             |
|------------------------|---------------------|--------------------|
| Species                | 0.36 [0.17, 0.54]   | 0.17 [0.05, 0.29]  |
| Age                    | 0.03 [-0.09, 0.15]  | 0.15 [0.02, 0.27]  |
| Gender                 | -0.08 [-0.20, 0.04] | 0.01 [-0.12, 0.13] |
| Perceived Intelligence | 0.02 [-0.09, 0.13]  | 0.17 [0.05, 0.28]  |
| Perceived Sentience    | -0.01 [-0.12, 0.11] | 0.07 [-0.04, 0.18] |
| Exposure to Animal     | -0.04 [-0.14, 0.06] | 0.07 [0.00, 0.14]  |

Note. Separate models were run for adults and children. For gender, men were coded as zero, and women were coded as one. For species, dogs were coded as one, and chimpanzees were coded as zero. CI = confidence interval.


incomplete responses. Children with Autism Spectrum Condition or other related conditions were allowed to participate in the study, but their data were not saved.

The final sample included 170 participants (82 girls, 88 boys), whose ages ranged from 6 to 9 years ( $M = 7.57$ ,  $SD = 1.13$ ). One hundred four children indicated that they have a dog at home or interact with a friend's or family member's dog regularly, and 73 indicated that they had seen a chimpanzee in real life before. We did not directly ask children about their faith, but all children took part in the school Catholic religion course in their schools, which was confirmed by their teachers. The course includes classes on the Catholic religion, its history, rules, praying, singing religious songs, and so on. Children often enroll in the course if they come from a religious family, as it is not an obligatory school course.

**Procedure.** Participants were recruited from schools and kindergartens. Written parental consent and verbal child assent were obtained for each participant. Children participated individually in a private room at their schools and classrooms. Two trained research assistants conducted all testing.

**Harming Dilemma.** Participants were presented with a toy version of the switch case trolley dilemma (Foot, 1967). Children stood at a table and were presented with plastic LEGO figures (Figure 1). These figures represented trolley dilemmas—two train tracks with varying numbers of people and dogs or chimpanzees at the end of each (a full setup visual is available on the OSF). The experimenter explained how the dilemma worked, stating,

There is a runaway trolley barreling down the railway tracks. Ahead, there is one person on the left track, and on the right track, there is one dog. Show us where the train should go. You can also tell us that you can't decide.



**Figure 1.** Photo of Lego Figurines (1 Dog vs. 50 Humans).

Children were asked to decide whether the train should go left or right or whether they could not decide.<sup>2</sup> Half of the female and half of the male figurines were used to represent humans. When one human was used in a dilemma, gender matching was applied (i.e., girls saw a female figurine and boys saw a male figurine).

When the child made the decision, the researcher repeated the child's choice by either saying: "You chose X side. That means you will save Y, but you won't save Z," or "You chose that you can't decide. That means it's too hard to choose one or the other."

In sum, children saw fourteen dilemmas in randomized order: 1 human versus 1 animal, 1 human versus 2 animals, 1 human versus 10 animals, 1 human versus 50 animals, 2 humans versus 1 animal, 10 humans versus 1 animal, 50 humans versus 1 animal for each human versus dog and human versus chimpanzee. All dilemmas were presented in randomized order, and the figures were randomized (left-right) for each dilemma.<sup>3</sup>

**Benefiting Dilemma.** We also included a measure focused on distributing benefits. Participants were asked whether to give a snack to a human, a dog, or a chimpanzee. They were told that all humans and animals love the snack but that the participant could choose only one species to give the snack to. Participants could choose between four categorical options: human, dog, chimpanzee, or "can't decide." All options were represented by LEGO toys, with humans matched to the participant's gender. This question, which was not included in the study by Wilks and Caviola et al. (2021), enabled us to investigate the tendency to prioritize humans over animals in the context of distributing benefits rather than preventing harm.

**Additional Questions.** In addition to the above tasks, children responded to several other questions.

Using the trolley procedure, we asked children to choose between saving one dog and one chimpanzee to directly measure their relative preferences for these two animals. We also included two control questions: one human versus 10 humans and one human versus 10 plates. We excluded participants who chose one human in the first question and 10 plates in the second question. If participants chose plates, it would indicate they were just choosing based on the larger number and maybe did not understand the instruction correctly (for the number of exclusions, see the “Participants” section).

In line with Wilks and Caviola et al. (2021), we asked participants three separate questions about how (a) smart, (b) capable of feeling pain, and (c) capable of feeling emotions humans, dogs, and chimpanzees are on a four-point scale from *not at all* to *a lot*. The first question assessed participants’ “perceived intelligence,” and the average of the two latter assessed “perceived sentience” (as in Wilks and Caviola et al., 2021). Finally, we measured whether children had contact with animals by asking two questions: “Do you have a dog at home (Or interact with a family/friend’s dog regularly?)” (yes/no), and “Have you ever seen a chimpanzee in your life?” (yes/no).

At the end of the study, children were thanked and offered a prize.

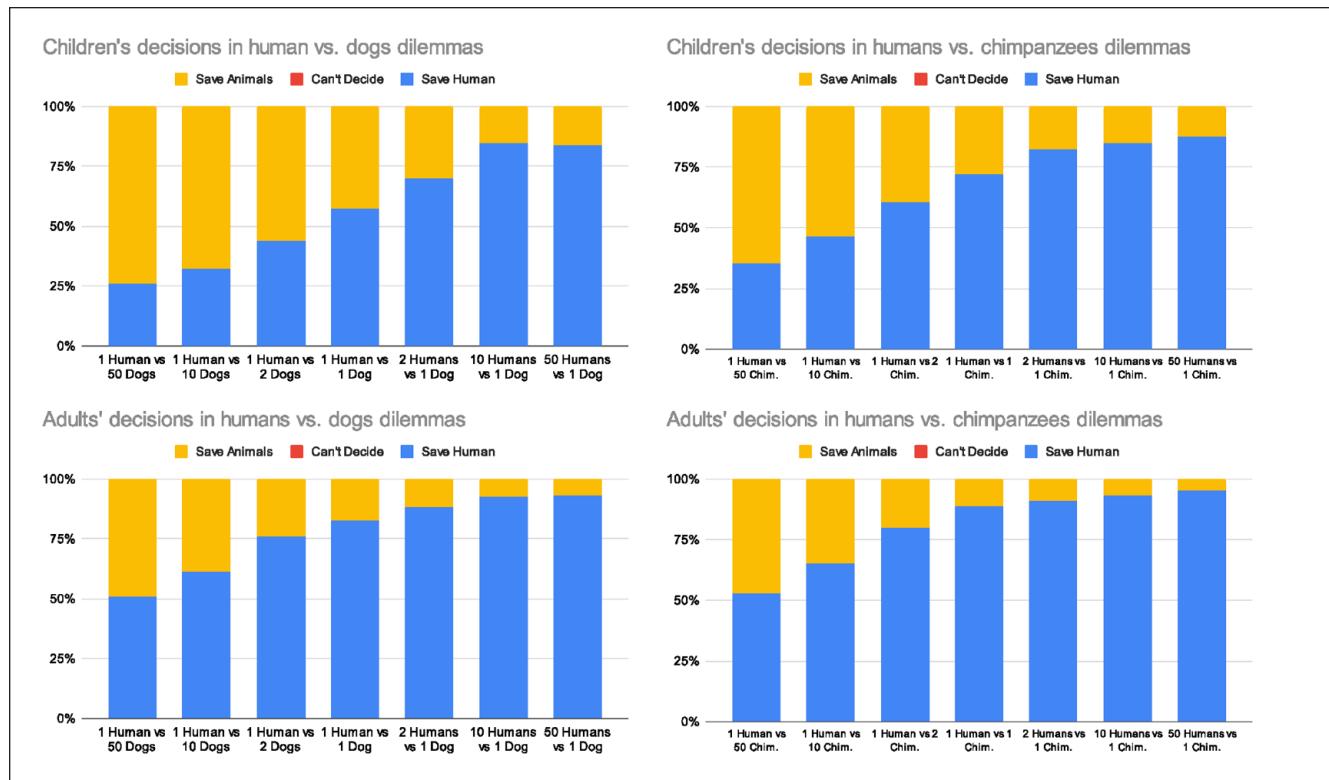
**Coding.** Following Wilks and colleagues’ (2021) scoring system,<sup>4</sup> we calculated two scores per participant: the human-over-dog bias score and the human-over-chimpanzee bias score. Each participant has a certain point for each comparison question, depending on their choice. Points were summed for each animal species and participant. The point scoring system was the following: (X stands for dog or chimpanzee): 1 human versus 50 X (human: 6.64, can’t decide: 3.32, animal: 0), 1 human versus 10 X (human: 4.32, can’t decide: 2.16, animal: 0), 1 human versus 2 X (human: 2, can’t decide: 1, animal: 0), 1 human versus 1 X (human: 1, can’t decide: 0, animal: -1), 1 X versus 2 humans (human: 0, can’t decide: -1, animal: -2), 1 X versus 10 humans (human: 0, can’t decide: -2.16, animal: -4.32), 1 X versus 50 humans (human: 0, can’t decide: -3.32, animal: -6.64).

The maximum score was 13.96, and the minimum score was -13.96. Higher scores suggest that participants more strongly favored humans over animals. A score of 0 suggests equal value attribution. A negative score suggests a preference for animals over humans.

We also calculated a “sentience score,” which combined the physical and emotional pain questions for each target (person, dog, chimpanzee) by averaging these two items. From here, we calculated a difference score for both intelligence and sentience by subtracting the dog and chimpanzee intelligence scores from the human intelligence score per participant. We did the same for the sentience score.

### Methodological Note

Since only one child chose the “can’t decide” option, we decided to slightly adjust our preregistered analysis plan. First, we removed this one participant from the analysis. Second, we conducted a study with adults in which participants did not have a “can’t decide” option available (see Study 1b) and published this as well as the original methodology with adults (Study 1c; presented in Supplementary Material). Note that we also conducted the study and analyses exactly as we preregistered them and found the same pattern of results.


### Study 1b: Polish Adults

**Participants.** Consistent with the power analyses from Study 1a, we aimed to collect 200 participants for this study via the Prolific platform among Polish participants located in Poland to ensure that we were sufficiently powered. Data from 14 participants were excluded from analyses because they failed to pass one or two of our attention checks (1 person vs. 10 plates, 1 person vs. 10 people), did not complete the survey, or gave unrealistically high estimates for their age (e.g., 100 and 190 years). The final sample included 178 participants (79 women, 99 men), whose ages ranged from 18 to 50 years ( $M = 25.92$ ,  $SD = 7.29$ ). One hundred forty participants indicated that they have a dog at home or regularly interact with a friend’s or family member’s dog. One hundred forty-six participants indicated they had seen a chimpanzee in real life.

**Measures and Procedure.** The measures were identical to Study 1a. The procedure was the same, except that the study was conducted as an online survey using written rather than verbal instructions and displaying photos of the figurines used in the children’s study.<sup>5</sup>

### Comparison of Polish Children and Polish Adults

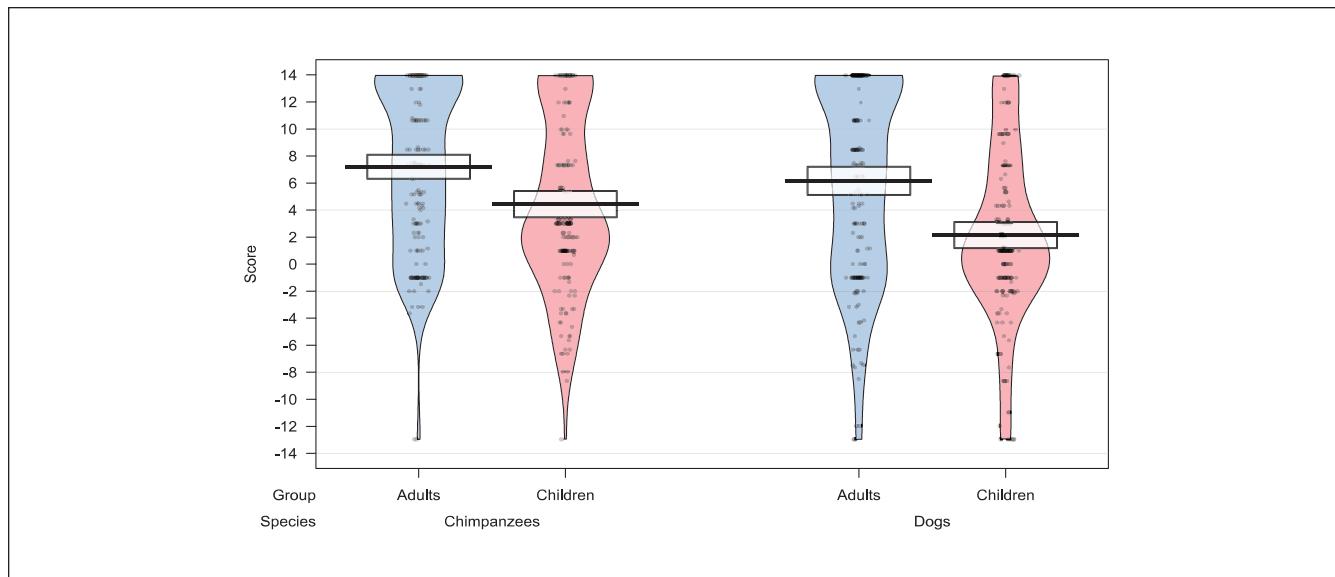
Figure 2 visualizes the answer pattern for the individual moral dilemmas. For example, In Study 1b, 83% of adults prioritized one human over one dog, and 89% of adults prioritized one human over one chimpanzee. By contrast, in Study 1a, 58% of children prioritized one human over one dog, and 72% of children prioritized one human over one chimpanzee. Adults’ mean human-over-dog bias score was 7.34 ( $SD = 7.81$ ), and their mean human-over-chimpanzee bias score was 8.01 ( $SD = 6.93$ ), which were significantly larger than zero for both species, dog:  $t(177) = 12.53$ ,  $p < .001$ ,  $d = 0.94$ ; chimpanzee:  $t(177) = 15.42$ ,  $p < .001$ ,  $d = 1.16$ . Children’s mean human-over-dog bias score was 2.18 ( $SD = 6.42$ ), and their mean human-over-chimpanzee bias score was 4.38 ( $SD = 6.42$ ), which were significantly larger than zero for both



**Figure 2.** Answer Pattern for Individual Moral Dilemmas (Children and Adults).

species, dog:  $t(169) = 4.42, p < .001, d = 0.33$ ; chimpanzee:  $t(169) = 8.90, p < .001, d = 0.68$ . We further find that physical and emotional pain ratings are correlated, except children's rating for dog emotional and physical pain ratings. For adults: humans,  $r(176) = .76, p < .001$ ; chimpanzees,  $r(176) = .38, p < .001$ ; dogs,  $r(176) = .49, p < .001$ ; for children: humans,  $r(168) = 0.23, p = .003$ ; chimpanzees,  $r(168) = 0.31, p < .001$ ; dogs,  $r(168) = 0.103, p = .181$ .

Figure 3 visualizes the results of a 2\*2 analysis of variance (ANOVA) with factors species (dogs vs. chimpanzees) and group (adults vs. children) using the human-over-animals score as a dependent variable. The analysis showed the significant main effect of species and age. As predicted, children prioritized humans over animals less than adults did,  $F(1, 346) = 45.99, p < .001$ , partial  $\eta^2 = .12$ . In addition, participants had a stronger tendency to prioritize humans over chimpanzees than over dogs,  $F(1, 346) = 15.38, p < .001$ , partial  $\eta^2 = .04$ . Moreover, we found a significant interaction between species and group,  $F(1, 346) = 4.44, p = .036$ , partial  $\eta^2 = .01$ , such that the difference in how much adults (vs. children) prioritize humans over animals is larger for dogs than chimpanzees.


We conducted two mixed linear regressions to further investigate the determinants of speciesism in both adults and children with bias score (humans over dogs and humans over chimpanzees) as a dependent variable and species, age, gender, perceived intelligence (as the difference in perceived

sentience between humans and dogs or chimpanzees), perceived sentience (again as the difference between humans and animals), and animal exposure as predictors. Table 1 shows the standardized coefficients with CIs for the different predictors. Table 2 shows the means and standard deviations for perceived intelligence and sentience.

As shown in Table 1, species membership was the strongest predictor of speciesism among children (children were more speciesist toward chimpanzees than dogs). For adults, species (more speciesism toward chimpanzees), perceived intelligence, and age were the strongest predictors. As we can see in Table 2, both adults and children assessed that humans are the most intelligent. However, while adults assessed that chimpanzees are more intelligent than dogs, children did the opposite, seeing dogs as more intelligent than chimpanzees. Regarding perceived sentience, both adults and children perceived humans to have the highest levels of sentience, followed by dogs and chimpanzees. However, for adults, these ratings were only marginally different.

### Replication Bayes Factor

We conducted a replication Bayes factor analysis (Bürkner, 2017; Kass & Raftery, 1995; Ly et al., 2019; Verhagen & Wagenmakers, 2014) to assess whether the effect of age category (adults vs. children) on speciesism is more in line with



**Figure 3.** Violin Plot of Bias Scores (Polish Children and Polish Adults).

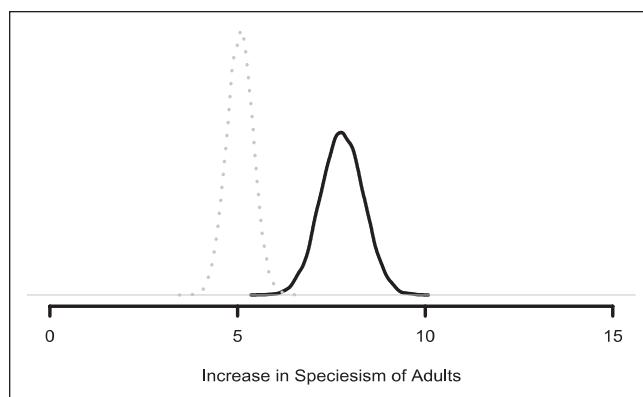
Note. Black lines indicate means, and white areas indicate confidence intervals.

**Table 2.** Means and SDs for Perceived Intelligence and Sentience for Polish Adults and Pol.

| Predictor                 | Children<br>M (SD) |                |                | Adults<br>M (SD) |                |                | Cohen's <i>d</i> (adults vs. children) |       |        |
|---------------------------|--------------------|----------------|----------------|------------------|----------------|----------------|----------------------------------------|-------|--------|
|                           | Chimpanzees        | Dogs           | Humans         | Chimpanzees      | Dogs           | Humans         | Chimpanzees                            | Dogs  | Humans |
| Perceived<br>Intelligence | 2.77<br>(0.81)     | 3.09<br>(0.67) | 3.52<br>(0.59) | 3.27<br>(0.61)   | 2.94<br>(0.74) | 3.82<br>(0.48) | 0.70                                   | -0.21 | 0.56   |
| Perceived<br>Sentience    | 2.87<br>(0.62)     | 3.16<br>(0.52) | 3.52<br>(0.5)  | 3.75<br>(0.44)   | 3.73<br>(0.47) | 3.97<br>(0.24) | 1.63                                   | 1.15  | 1.13   |

Wilks and Caviola et al. (2021) or the null hypothesis of no effect. Figure 4 visualizes the result. We can see that the posterior is much closer to the previous study than the null of no effect. This is also supported by the Bayes factor, which indicates overwhelming evidence for a successful replication ( $BF_{10} = 1.39 \times 10^{18}$ ).

### Providing Benefits to Different Species


We also studied the benefit provision dilemma. Table 3 summarizes the snack allocation responses of adults and children. Adults differ from children in how they allocate the snack,  $\chi^2(2) = 69.62, p < .001$ , Cramer's  $V = 0.44$ , and are most likely to give the snack to a dog, then to a person and then to a chimpanzee. The same pattern also holds for children, where the proclivity to provide the snack to the dog is even stronger,  $\chi^2(2) = 106.32, p < .001$ , Cramer's  $V = 0.56$ .

A chi-square test also indicates that the snack allocation differs between the two age groups,  $\chi^2(2) = 8.97, p = .011$ , Cramer's  $V = 0.16$ . When directly comparing snack allocation to humans vs. animals—not taking into account

differences between animals—we find evidence that children are more likely to assign the snack to animals,  $\chi^2(1) = 8.01, p = .005$ , Cramer's  $V = 0.16$ .

### Discussion

Most people value human lives much more than animal lives (Awad et al., 2018; Caviola et al., 2019, 2021). However, recent research has raised the question of whether children have different intuitions about the relative value of animals and humans. Wilks and colleagues (2021) examined how children and adults in the United States differ in their tendency to prioritize humans over animals in tragic trade-off dilemmas, finding that children were much less likely to prioritize humans over dogs and pigs. In the current set of studies, we aimed to conceptually replicate and extend their work by examining these intuitions in a Polish sample. We also used different methodologies; testing whether children also prefer benefiting animals (over humans), testing the effect with a different type of animal species (chimpanzees instead of pigs), employing toy figurines rather than images, and



**Figure 4.** Prior and Posterior Distributions for the Replication Bayes Factor Analysis (Studies 1a and 1b).

Note: Black indicates the posterior distribution for higher speciesism in adults after updating on the study of Wilks and Caviola et al. (2021); Gray indicates the posterior distribution after updating on our study using Wilks and Caviola et al. (2021) as the prior. The height of the distribution indicates the density.

**Table 3.** Allocation of the Snack by Polish Children and Polish Adults (Studies 1a and 1b).

| Type of Participants | Person (%) | Dog (%)  | Chimpanzee (%) |
|----------------------|------------|----------|----------------|
| Adults               | 52 (29)    | 108 (61) | 18 (10)        |
| Children             | 27 (16)    | 120 (71) | 23 (13)        |

using traditional trolley dilemma (e.g., choosing whom to sacrifice rather than whom to save).

We replicated the main effect, showing that children (Study 1a) prioritize humans over animals less than adults (Study 1b). This was the case in both harming scenarios (trolley dilemma) and benefiting scenarios (choosing whom to give a snack to) and when participants did (Study 1b) or did not have the option to choose “can’t decide” (Study 1c; presented in Supplementary Materials). Thus, the key findings from Wilks and colleagues (2021) hold in several contexts and across different cultural samples.

In contrast to our predictions, both children and adults prioritized humans over chimpanzees more than humans over dogs. While this mirrors past findings with adults (Caviola et al., 2021), it is still surprising, given that chimpanzees have more advanced cognitive capacities than dogs and are one of our closest living relatives. Future studies could tease out possible explanations for this preference, such as our social relationships with dogs, familiarity, or beauty (see Henseler Kozachenko & Piazza, 2021). This finding suggests that factors beyond perceived mental capacities play an important role in shaping how we think about the moral worth of different entities. One possible explanation may be the human-dog co-evolution (Hare & Tomasello, 2005). Since humans and dogs have long relied on one another for survival, humans might value dogs more than other species, and our results support this argument. Moreover, dogs have

evolved specialized skills for reading human social and communicative behavior (Cooper et al., 2003; Miklósi & Topál, 2004), and these skills seem more human-like than those of other animals more closely related to humans phylogenetically, such as chimpanzees (Hare & Tomasello, 2005). Our results suggest that we judge different animals differently; thus, we cannot generalize our results to all animals. Notably, this persisted in both children’s and adults’ judgments. Future studies should consider testing a broader range of animals to understand better the role of species category in our ascriptions of moral worth.

Children and adults had human-over-animal-bias scores significantly above zero for both dogs and chimpanzees. This contrasts with Wilks and colleagues (2021), where children showed almost no bias for humans over dogs. This suggests that children in Poland may have a stronger tendency to prioritize humans over animals than children in the United States. However, a direct comparison to Wilks and colleagues is difficult as there were methodological differences. However, ultimately, children in both countries had a much weaker tendency to prioritize humans over animals than adults did. Thus, the overall pattern appears roughly the same in US and Polish populations.

Both adults and children preferred to give animals snacks over people. However, this tendency was stronger in children than in adults. This is noteworthy when considering that children slightly prioritized humans over animals in the main task. It is possible that children considered the animals to be more in need (i.e., unable to get their own food) and were thus more likely to choose to give them the snack. This aligns with past research suggesting that children see animals as vulnerable (Hussar & Harris, 2010). This result is the first evidence that children also value animals more than adults in benefiting scenarios. Future research could study whether children also display less speciesism in other benefiting dilemmas, such as in providing helping behaviors or allocating different resources. We interpret all such “benefiting” behaviors toward animals, like feeding, as moral behaviors. However, it should be pointed out that this does not have to be the case for everyone. Behaviors like feeding can be an example of prosociality or caring about others, but they also may be a type of playing with animals. Future studies should pay more attention to participant’s interpretations or intentions about their decisions. Another alternative that may be fruitful to investigate is donation behavior (e.g., donations to human versus animal causes).

We also tested possible predictors of speciesism among children and adults. The most relevant factor was just a species, and factors like the participant’s gender, perceived animal’s sentience, and exposure to animals did not matter. However, the participant’s age did matter in the case of adults (not in the case of children). Older adults were more speciesist. Moreover, perceived animal intelligence did matter for adults, not for children, suggesting that the higher perceived intelligence, the higher the tendency to be speciesist. The

analogous findings can be observed in Wilks and Caviola et al. (2021) and Henseler Kozachenko and Piazza (2021). This would suggest that different factors play a role for children and adults, and we need future investigations to understand why we observed this result and what else may be relevant for being more speciesist.

Our study contributes several new data points to our understanding of speciesism and sheds light on questions like: What is the nature of speciesism? Is it something people are born with or acquire later? Is speciesism a strong and universal attitude for all people? We add to a growing body of evidence (e.g., Wilks and Caviola et al., 2021) that children value animals differently than adults. We show this using different animals and scenarios. Our results provide a new piece of evidence that speciesism is acquired (not innate) and culturally universal. However, much more research across diverse samples is needed to fully understand how people perceive ascribing moral worth to humans and animals. This is relevant not only to the debate about speciesism (Horta, 2010) but also to children's moral development (McGuire et al., 2023), including their moral circles (Laham, 2009; Singer, 2011). In addition, this knowledge may contribute to the long-standing debate in philosophy about how people shape their thinking about their place in the world in contrast to animals (Jaquet, 2019). That is why conducting more replications of our findings is crucial, especially in more diverse cultures, including the less industrialized ones, where children are raised closer to using animals to produce meat or other benefits like clothes. Polish adults, like U.S. Americans, may start rationalizing the meat-production process once they become more aware of how meat is produced, resulting in the moral devaluation of non-human animals (Wilks and Caviola et al., 2021). It is still possible that children who are more involved in using animals in the meat-production process (e.g., through involvement in ranching or hunting) early in life could begin to show adult-like patterns.

In sum, our study sheds some light on the questions about the nature of speciesism. We provide support for the notion that we are not born speciesist but instead acquire it later in life and also that speciesism may be universal. Of course, much more research is needed to answer these questions. A number of questions remain: Will these findings generalize to other cultures? At what age do children become more speciesist? What factors play a role here? Would our results replicate for all types of animals? And many more.

There are several limitations of the current research. First, we used a different procedure for Polish children compared to the past study of Wilks and colleagues (2021), limiting our direct cross-cultural comparison. However, this comparison was not the primary aim of our study, and our procedure and data analyses were very similar. Future studies could directly compare children's responses from different cultures to test the tentative finding that culture and age interact.

We were also limited in the scope of our experiments. We only tested participants in one culture, included two animals in our stimuli (dogs and chimpanzees), and included two

tasks (trolley scenario and snack provision task). Although this is a substantial expansion of previous research, the generalizability of the findings is still limited. For example, participants may respond differently to dangerous or scary animals (Neldner & Wilks, 2022; Piazza et al., 2014; Prokop et al., 2021), or depending on culture (Hofstede, 2001; Muthukrishna et al., 2020; Uz, 2015).

It is particularly important to acknowledge the limitations of the cultural scope. Research has already identified that people from different cultures make different moral decisions (Misiak et al., 2018; Sorokowski et al., 2020; Turpin et al., 2021), and there is increasing awareness of the limitations of WEIRD samples in psychology (Henrich et al., 2010; Nielsen et al., 2017), also for the impact of culture on caring about animals (Małecki et al., 2020). Thus, we can expect that moral judgments about animals may also vary as a function of culture, especially between WEIRD and non-WEIRD countries. Given that we are investigating the potential role of social learning in shaping children's moral views about animals, it is critical to conduct this type of work with an even broader range of participants going forward.

Finally, we want to highlight the specific nature of benefiting dilemmas. In real life, it is much more common to feed an animal than another person (especially dogs). We do not know whether experience in feeding animals could have impacted the results obtained here. Given this, future research should examine benefiting scenarios using more ecologically valid scenarios. Nonetheless, our research shows that different acts (e.g., preventing harm and offering a benefit) can yield different results. This demonstrates the need to use various tasks and scenarios when examining moral concerns for different beings.

## Conclusion

We examined how children and adults differ in their tendency to prioritize humans over animals. We found that Polish children prioritized humans over animals less than Polish adults. This replicates past work, which found the same pattern of results in children from the United States and the United Kingdom (McGuire et al., 2023; Wilks & Caviola et al., 2021). We also observed this effect in both harming and benefiting scenarios. In addition, we observed this effect not only for dogs but also for chimpanzees. These findings offer new insight into the differences in how children and adults from different countries value animals and contribute to a small but growing body of literature demonstrating young children's greater propensity to grant moral status to distant others.

## Acknowledgments

The authors thank Paul Bloom for fruitful discussions about study design and all the parents and directors who agreed to help in this study during the hard pandemic time. The authors also thank Carter Allen for proofreading. Finally, the authors thank our participants, without whom this study could not happen.

## Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

## Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Publication co-financed by the funds granted under the Research Excellence Initiative of the University of Silesia in Katowice to M.P.-C.

## Open Practices

Because of our dedication to open science, data, analysis codes, and study materials are available at [https://osf.io/ecxyn/?view\\_only=None](https://osf.io/ecxyn/?view_only=None). This study was preregistered: <https://osf.io/3tr4x/>

## ORCID iDs

Mariola Paruzel-Czachura  <https://orcid.org/0000-0002-8716-9778>

Lucius Caviola  <https://orcid.org/0000-0003-4302-5884>

## Supplemental Material

Supplemental material is available online with this article.

## Notes

1. As humans are also animals, we should use the term “non-human animals” when describing animals. However, to avoid a long phrasing later in the manuscript, we use the term “animals” instead of “non-human animals.”
2. In the preregistered version, we planned to ask children to move the train (“Please move the train”). However, because the study was conducted during the COVID pandemic in 2021, we instead, for safety reasons, asked children to show by finger in which direction the train should go.
3. We preregistered that the highest number of individuals in the dilemmas was 100, following the procedure of Wilks and colleagues (2021). However, we then decided for practical reasons to keep the maximum number of individuals 50 instead of 100. This is because 100 Lego toys were too many for our setup.
4. The point-scoring system was based on the function  $\log_2(2x)$ , where  $x$  stands for the larger number of beings of the respective dilemma. This would ensure that the scores were weighted by the numbers of beings at stake in the dilemma but not so much that the dilemmas involving a higher number of beings completely dominated the score. For example, it meant that prioritizing one person over 100 dogs contributed more to the humans-overdogs score than prioritizing one human over 10 dogs, but not 10 times more. The maximum score (absolute prioritization of humans) was 14.96, and the minimum score was -14.96. A score of zero meant that the participants attributed the same moral status to both types of beings. See the Supplementary Materials of Wilks et al. (2021) for more details about this scoring system.
5. As noted earlier, we ran two versions of this study with adults: one version without a “can’t decide” option (Study 1b; reported here) and one version with a “can’t decide” option (Study 1c; reported in the Supplementary Materials). We did so because

adults were much more likely than children to choose “can’t decide.” This may be an artifact of the study design—children did not have a physical representation of the “can’t decide” dilemma, as they only saw the two tracks on the table while the adults saw all three options in writing. Nonetheless, children were given verbal instructions each time, thus the option was made available to them. The analyses of both versions of the study yielded the same pattern of results (see Supplementary Materials).

## References

Aboud, F. E. (2008). A social-cognitive developmental theory of prejudice. In S. M. Quintana & C. McKown (Eds.), *Handbook of race, racism, and the developing child* (pp. 55–71). John Wiley & Sons.

Alves, R. R. N., & Barboza, R. R. D. (2018). Chapter 15: The role of animals in human culture. In R. R. Nóbrega Alves & U. P. Albuquerque (Eds.), *Ethnozoology* (pp. 277–301). Academic Press. <https://doi.org/10.1016/B978-0-12-809913-1.00015-6>

Amiot, C. E., & Bastian, B. (2015). Toward a psychology of human–animal relations. *Psychological Bulletin*, 141, 6–47. <https://doi.org/10.1037/a0038147>

Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., Bonnefon, J.-F., & Rahwan, I. (2018). The moral machine experiment. *Nature*, 563, 59–64. <https://doi.org/10.1038/s41586-018-0637-6>

Bostyn, D. H., Sevenhuijsen, S., & Roets, A. (2018). Of mice, men, and trolleys: Hypothetical judgment versus real-life behavior in trolley-style moral dilemmas. *Psychological Science*, 29, 1084–1093. <https://doi.org/10.1177/0956797617752640>

Bożewicz, M. (2020, June). Religijność Polaków w ostatnich 20 latach [Religiosity of Poles in the last 20 years]. Public Opinion Research Center (CBOS), 63. [https://www.cbos.pl/SPISKOM.POL/2020/K\\_063\\_20.PDF](https://www.cbos.pl/SPISKOM.POL/2020/K_063_20.PDF)

Bürkner, P.-C. (2017). Brms: An R package for Bayesian multilevel models using Stan. *Journal of Statistical Software*, 80, 1–28. <https://doi.org/10.18637/jss.v080.i01>

Caviola, L., Everett, J. A. C., & Faber, N. S. (2019). The moral standing of animals: Towards a psychology of speciesism. *Journal of Personality and Social Psychology*, 116, 1011–1029. <https://doi.org/10.1037/pspp0000182>

Caviola, L., Kahane, G., Everett, J. A. C., Teperman, E., Savulescu, J., & Faber, N. S. (2021). Utilitarianism for animals, Kantianism for people? Harming animals and humans for the greater good. *Journal of Experimental Psychology: General*, 150, 1008–1039. <https://doi.org/10.1037/xge0000988>

Caviola, L., Schubert, S., Kahane, G., & Faber, N. S. (2022). Humans first: Why people value animals less than humans. *Cognition*, 225, 105139. <https://doi.org/10.1016/j.cognition.2022.105139>

Collado, S., Rodríguez-Rey, R., & Sorrel, M. A. (2022). Does beauty matter? The effect of perceived attractiveness on children’s moral judgments of harmful actions against animals. *Environment and Behavior*, 54, 247–275. <https://doi.org/10.1177/00139165211014626>

Cooper, J. J., Ashton, C., Bishop, S., West, R., Mills, D. S., & Young, R. J. (2003). Clever hounds: Social cognition in the domestic dog (*Canis familiaris*). *Applied Animal Behaviour Science*, 81, 229–244. [https://doi.org/10.1016/S0168-1591\(02\)00284-8](https://doi.org/10.1016/S0168-1591(02)00284-8)

Dhont, K., Hodson, G., & Leite, A. C. (2016). Common ideological roots of speciesism and generalized ethnic prejudice: The social dominance human–animal relations model (SD-HARM). *European Journal of Personality*, 30, 507–522. <https://doi.org/10.1002/per.2069>

Dhont, K., Hodson, G., Leite, A. C., & Salmen, A. (2019). The psychology of speciesism. In K. Dhont & G. Hodson (Eds.), *Why we love and exploit animals* (pp. 29–49). Routledge.

Dhont, K., Hodson, G., Loughnan, S., & Amiot, C. E. (2019). Rethinking human-animal relations: The critical role of social psychology. *Group Processes & Intergroup Relations*, 22, 769–784. <https://doi.org/10.1177/1368430219864455>

Foot, P. (1967). The problem of abortion and the doctrine of the double effect. *Oxford Review*, 5, 5–15.

Gross, A. S. (2017). Religion and animals. In *Oxford handbook online*. <https://doi.org/10.1093/oxfordhb/9780199935420.013.10>

Hare, B., & Tomasello, M. (2005). Human-like social skills in dogs? *Trends in Cognitive Sciences*, 9, 439–444. <https://doi.org/10.1016/j.tics.2005.07.003>

Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are not WEIRD. *Nature*, 466, 29–29. <https://doi.org/10.1038/466029a>

Henseler Kozachenko, H., & Piazza, J. (2021). How children and adults value different animal lives. *Journal of Experimental Child Psychology*, 210, Article 105204. <https://doi.org/10.1016/j.jecp.2021.105204>

Hofstede, G. (2001). *Culture's consequences: Comparing values, behaviors, institutions, and organizations across nations*. SAGE.

Horta, O. (2010). What is speciesism? *Journal of Agricultural and Environmental Ethics*, 23, 243–266. <https://doi.org/10.1007/s10806-009-9205-2>

Hussar, K. M., & Harris, P. L. (2010). Children who choose not to eat meat: A study of early moral decision-making. *Social Development*, 19, 627–641. <https://doi.org/10.1111/j.1467-9507.2009.00547.x>

Hussar, K. M., & Harris, P. L. (2018). Vegetarian and nonvegetarian children's judgments of harm to animals and humans. *Ecopsychology*, 10, 36–43. <https://doi.org/10.1089/eco.2017.0039>

Inglehart, R., & Baker, W. E. (2000). Modernization, cultural change, and the persistence of traditional values. *American Sociological Review*, 65, 19–51. <https://doi.org/10.2307/2657288>

Is LEGO the most popular toy?: Brick bucks. (2021). <https://brick-bucks.net/is-lego-the-most-popular-toy/>

Jaquet, F. (2019). A debunking argument against speciesism. *Synthese*, 198, 1011–1027. <https://doi.org/10.1007/s11229-019-02080-5>

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. *Journal of the American Statistical Association*, 90, 773–795. <https://doi.org/10.2307/2291091>

Killen, M., Mulvey, K. L., Richardson, C., Jampol, N., & Woodward, A. (2011). The accidental transgressor: Morally-relevant theory of mind. *Cognition*, 119, 197–215. <https://doi.org/10.1016/j.cognition.2011.01.006>

Laham, S. M. (2009). Expanding the moral circle: Inclusion and exclusion mindsets and the circle of moral regard. *Journal of Experimental Social Psychology*, 45, 250–253. <https://doi.org/10.1016/j.jesp.2008.08.012>

Ly, A., Etz, A., Marsman, M., & Wagenmakers, E.-J. (2019). Replication Bayes factors from evidence updating. *Behavior Research Methods*, 51, 2498–2508. <https://doi.org/10.3758/s13428-018-1092-x>

Malecki, W., Sorokowski, P., Pawłowski, B., & Cieński, M. (2020). *Human minds and animal stories: How narratives make us care about other species*. Routledge.

Marshall, J., Gollwitzer, A., Mermin-Bunnell, K., Shinomiya, M., Retelsdorf, J., & Bloom, P. (2022). How development and culture shape intuitions about prosocial obligations. *Journal of Experimental Psychology: General*, 151, 1866–1882. <https://doi.org/10.1037/xge0001136>

McGuire, L., Fry, E., Palmer, S. B., & Faber, N. S. (2022). Age-related differences in reasoning about the acceptability of eating animals. *Social Development*, 32, 690–703. <https://doi.org/10.1111/sode.12655>

McGuire, L., Palmer, S. B., & Faber, N. S. (2023). The development of speciesism: Age-related differences in the moral view of animals. *Social Psychological and Personality Science*, 14, 228–237. <https://doi.org/10.1177/19485506221086182>

Miklósi, Á., & Topál, J. (2004). Review Comparative social cognition: What can dogs teach us? *Animal Behaviour*, 67, 995–1004. <https://doi.org/10.1016/j.anbehav.2003.10.008>

Misiak, M., Butovskaya, M., & Sorokowski, P. (2018). Ecology shapes moral judgments towards food-wasting behavior: Evidence from the Yali of West Papua, the Ngorongoro Maasai, and Poles. *Appetite*, 125, 124–130. <https://doi.org/10.1016/j.appet.2017.12.031>

Muthukrishna, M., Bell, A. V., Henrich, J., Curtin, C. M., Gedranovich, A., McInerney, J., & Thue, B. (2020). Beyond Western, Educated, Industrial, Rich, and Democratic (WEIRD) psychology: Measuring and mapping scales of cultural and psychological distance. *Psychological Science*, 31, 678–701. <https://doi.org/10.1177/0956797620916782>

Neldner, K., Crimston, C., Wilks, M., Redshaw, J., & Nielsen, M. (2018). The developmental origins of moral concern: An examination of moral boundary decision making throughout childhood. *PLOS ONE*, 13, Article e0197819. <https://doi.org/10.1371/journal.pone.0197819>

Neldner, K., & Wilks, M. (2022). How do children value animals? A developmental review. *Psychology of Human-Animal Intergroup Relations*, 1, Article e9907. <https://doi.org/10.5964/phair.9907>

Neldner, K., Wilks, M., Crimston, C. R., Jaymes, R. W. M., & Nielsen, M. (2023). I may Not like you, but I still care: Children differentiate moral concern from other constructs. *Developmental Psychology*, 59, 549–566. <https://doi.org/10.1037/dev0001485>

Nielsen, M., & Haun, D. (2016). Why developmental psychology is incomplete without comparative and cross-cultural perspectives. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 371, Article 20150071. <https://doi.org/10.1098/rstb.2015.0071>

Nielsen, M., Haun, D., Kärtner, J., & Legare, C. H. (2017). The persistent sampling bias in developmental psychology: A call to action. *Journal of Experimental Child Psychology*, 162, 31–38. <https://doi.org/10.1016/j.jecp.2017.04.017>

Piazza, J., Landy, J. F., & Goodwin, G. P. (2014). Cruel nature: Harmfulness as an important, overlooked dimension in judgments of moral standing. *Cognition*, 131, 108–124. <https://doi.org/10.1016/j.cognition.2013.12.013>

Piazza, J., Simpson, V., & McGuire, L. (2023). Why children moralise harm to animals but not meat. *Trends in Cognitive Sciences*, 27, 685–688. <https://doi.org/10.1016/j.tics.2023.05.004>

Prokop, Z. M., Zvarík, M., & Fedor, P. (2021). The effect of animal bipedal posture on perceived cuteness, fear and willingness to protect them. *Frontiers in Ecology and Evolution*, 9, Article 681241.

Reinecke, M. G., Wilks, M., & Bloom, P. (2021). Developmental changes in perceived moral standing of robots. *Proceedings of the Annual Meeting of the Cognitive Science Society*, 43. <https://escholarship.org/uc/item/8f32d068>

Rustemovich, A. R. (2017). *Exploration of animals exploitation in food, clothes, entertainment and testing industries, its impact on economy and ecology*. <https://doi.org/10.20861/2410-2873-2017-32-003>

Rutland, A., Killen, M., & Abrams, D. (2010). A new social-cognitive developmental perspective on prejudice: The interplay between morality and group identity. *Perspectives on Psychological Science*, 5, 279–291. <https://doi.org/10.1177/1745691610369468>

Saarni, C. (2010). The plasticity of emotional development. *Emotion Review*, 2, 300–303. <https://doi.org/10.1177/1754073909357969>

Scanes, C. G., & Chengzhong, P. (2018). Chapter 11: Animals and religion, belief systems, symbolism and myth. In C. G. Scanes & S. R. Toukhsati (Eds.), *Animals and human society* (pp. 257–280). Academic Press. <https://doi.org/10.1016/B978-0-12-805247-1.00017-4>

Schein, C. (2020). The importance of context in moral judgments. *Perspectives on Psychological Science*, 15, 207–215. <https://doi.org/10.1177/1745691620904083>

Singer, P. (2011). The expanding circle. Ethics, evolution, and moral progress. Princeton University Press. <https://doi.org/10.1515/9781400838431>

Sorokowski, P., Marczak, M., Misiak, M., & Białek, M. (2020). Trolley dilemma in Papua: Yali horticulturalists refuse to pull the lever. *Psychonomic Bulletin & Review*, 27, 398–403. <https://doi.org/10.3758/s13423-019-01700-y>

Turpin, M. H., Walker, A. C., Fugelsang, J. A., Sorokowski, P., Igor, G., & Białek, M. (2021). The search for predictable moral partners: Predictability and moral (character) preferences. *Journal of Experimental Social Psychology*, 97, Article 104196. <https://doi.org/10.1016/j.jesp.2021.104196>

Uz, I. (2015). The index of cultural tightness and looseness among 68 countries. *Journal of Cross-Cultural Psychology*, 46, 319–335. <https://doi.org/10.1177/0022022114563611>

Verhagen, J., & Wagenmakers, E.-J. (2014). Bayesian tests to quantify the result of a replication attempt. *Journal of Experimental Psychology: General*, 143, 1457–1475. <https://doi.org/10.1037/a0036731>

Wilks, M., Caviola, L., Kahane, G., & Bloom, P. (2021). Children prioritize humans over animals less than adults do. *Psychological Science*, 32, 27–38. <https://doi.org/10.1177/0956797620960398>